第五章 数列
第一节 基本概念
MBA数学知识点:数列的基本概念
【定义5. 1】 依一定次序排列的一列数叫做数列。数列中的每一个数都叫这个数列的项。
数列的一般表达形式为
a1,a2,a3,…,an,… 或简记为{an}
其中an叫做数列{an} 的通项,自然数n 叫做an的序号。如果通项an与n之间的函数关系,可以用一个关于n 的解析式f(n)表达,则称an=f(n)为数列{an}的通项公式。
如数列1,1/2,1/4,1/8,…的一个通项公式为an=1/2^ (n-1)
知道了一个数列的通项公式,就等于从整体上掌握了这个数列,即由通项公式可求出这个数列中的任意一项;对任意给出的数可以确定它是否是该数列中的项。
如在上面给出的数列中,由an=1/2^(n-1),可以求出a11=1/2^10=1/1024, 也可以断定1/10不是该数列中的项,而由1/64=1/2^6得n=7,即1/64是已知数列中的第7项。
数列的前n项的和记做Sn。对于数列忆{an} ,显然有
Sn= a1+a2+a3+…+an
当n=1 时,a1=S1,当n大于等于2 时,an=Sn-S(n-1)
项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列。